5(t)=-16t^2+100t+5

Simple and best practice solution for 5(t)=-16t^2+100t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(t)=-16t^2+100t+5 equation:



5(t)=-16t^2+100t+5
We move all terms to the left:
5(t)-(-16t^2+100t+5)=0
We get rid of parentheses
16t^2-100t+5t-5=0
We add all the numbers together, and all the variables
16t^2-95t-5=0
a = 16; b = -95; c = -5;
Δ = b2-4ac
Δ = -952-4·16·(-5)
Δ = 9345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95)-\sqrt{9345}}{2*16}=\frac{95-\sqrt{9345}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95)+\sqrt{9345}}{2*16}=\frac{95+\sqrt{9345}}{32} $

See similar equations:

| 16(d+1)=-2 | | -3u=2(9u-2) | | 1.90+x=14.40 | | -3x=2x+1/2 | | -3x=-2x+1/3 | | 17+47=7x | | 15=4q+q | | 90=64+64+x | | -2x-5=1/3 | | 25=0.5(188-x) | | w/5+13=23 | | g+3=1.5 | | 6+u/4=4.24 | | 3k-4k+11=3 | | 2.4=6u-5.4 | | 5+15^x^-^3=290 | | 123-y=180 | | 3+x/31.25=8 | | -x^2=-143+2x | | x+79+76=180 | | x+79+76=190 | | 15x-7=1/2 | | 2x+2x+x=320 | | 74-x^2+x=18 | | 6m-33=m | | (3x+6)=(x+14) | | 38=2x+9 | | 130+x=131+3 | | -8-y=19 | | -7y^2-69y+10=0 | | 18-72x^2=0 | | (3+2z)^2=0 |

Equations solver categories